2008年03月12日,在阿柔样方1、阿柔样方2和阿柔样方3开展了Envisat ASAR数据的地面同步观测试验。ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:29BJT。阿柔样方2由于靠近河谷温度较低,积雪尚未融化,因此主要开展积雪参数的同步观测试验,而阿柔样方1和阿柔样方3积雪已消融,主要开展土壤冻融状况和土壤水分的同步观测试验。
阿柔样方1、阿柔样方2和阿柔样方3均为4Grid×4Grid,每个Grid为30m×30m。环刀取土只在每个Grid的中心点开展,其余测量在每个Grid的中心点和角点展开。
在阿柔样方1,采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;ML2X土壤水分速测仪获得土壤体积含水量;PR2土壤剖面水分速测仪获得10cm、20cm、30cm、40cm、60cm及100cm土壤体积含水量剖面;针式温度计获得0-5cm平均土壤温度;并采用100cm^3环刀取土经烘干获得土壤重量含水量、土壤容重及体积含水量。
在阿柔样方2,开展了与ASAR同步的积雪参数观测,包括卫星过境时同步的雪表面温度观测(采用热红外温度枪测量),分层雪层温度观测(采用针式温度计测量),雪粒径观测(采用手持式显微镜测量),雪密度观测(采用铝盒方式测量),以及雪表面和雪土界面同步温度测量(采用热红外温度枪测量);积雪光谱观测(采用ASD光谱仪测量);积雪反照率观测(采用总辐射表测量)。
在阿柔样方3,采用WET土壤水分速测仪测量土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;针式温度计(#5和#7)获得0-5cm平均土壤温度;手持式红外温度计(#5)获得地表辐射温度;并采用100cm^3环刀取土经烘干获得土壤重量含水量、土壤容重及体积含水量。地表粗糙度信息可参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。此外,还在阿柔样方1开展了探地雷达同步观测。
本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法,及利用GPR数据反演土壤水分及冻结深度提供基本的地面数据集。
采集时间 | 2008/03/12 - 2008/03/13 |
---|---|
采集地点 | 黑河流域,阿柔加密观测站,上游寒区水文实验站 |
数据量 | 686.5 MiB |
数据格式 | excel |
数据时间分辨率 | 时 |
坐标系 | WGS84 |
2008年03月12日,在阿柔样方1、阿柔样方2和阿柔样方3开展了Envisat ASAR数据的地面同步观测试验。ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:29BJT。阿柔样方2由于靠近河谷温度较低,积雪尚未融化,因此主要开展积雪参数的同步观测试验,而阿柔样方1和阿柔样方3积雪已消融,主要开展土壤冻融状况和土壤水分的同步观测试验。
在阿柔样方1,采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;ML2X土壤水分速测仪获得土壤体积含水量;PR2土壤剖面水分速测仪获得10cm、20cm、30cm、40cm、60cm及100cm土壤体积含水量剖面;针式温度计获得0-5cm平均土壤温度;并采用100cm^3环刀取土经烘干获得土壤重量含水量、土壤容重及体积含水量。
在阿柔样方2,开展了与ASAR同步的积雪参数观测,包括卫星过境时同步的雪表面温度观测(采用热红外温度枪测量),分层雪层温度观测(采用针式温度计测量),雪粒径观测(采用手持式显微镜测量),雪密度观测(采用铝盒方式测量),以及雪表面和雪土界面同步温度测量(采用热红外温度枪测量);积雪光谱观测(采用ASD光谱仪测量);积雪反照率观测(采用总辐射表测量)。
在阿柔样方3,采用WET土壤水分速测仪测量土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;针式温度计(#5和#7)获得0-5cm平均土壤温度;手持式红外温度计(#5)获得地表辐射温度;并采用100cm^3环刀取土经烘干获得土壤重量含水量、土壤容重及体积含水量。
数据质量良好
# | 标题 | 文件大小 |
---|---|---|
1 | 黑河综合遥感联合试验:阿柔加密观测区Envisat ASAR地面同步观测数据集(2008年3月12日).zip | 686.5 MiB |
# | 时间 | 姓名 | 用途 |
---|---|---|---|
1 | 2024/12/14 01:42 | 唐*倩 |
论文题目:基于MODIS数据的山区积雪BRDF反演
数据在研究中的作用:作为数据源、验证模拟数据的精度
论文类型:硕士论文
导师姓名:奥勇:
|
2 | 2023/01/02 00:48 | 杨*子 |
论文题目:论文题目::基于特征熵的土壤质量综合评价 论文摘要:城市自动绿植监护过程工程巨大,环境复杂,仅通过布设大量传感器处理海量数据是极其不现实的,且此时得出的初始数据也是不理想的。本文将信息论的方法应用至以估计参数不准确度最低为目标的城市自动绿植监护器优化中,并且结合前人的研究结果进行了再创新与应用。将条件熵准则应用至传感器测点优化问题以及利用熵函数概念对城市绿化土地进行评定分类,其结果作为是否开启系统浇灌模块和安全预警模块的判据。最后实地对城市绿化土地进行数据测量与评估,应用了本文的方法,验证了该方法准确度较高,简单易行。 论文类型:通信工程类 导师姓名:王仲根
|
©2024 中国科学院西北生态环境资源研究院 备案号:陇ICP备2021001824号-34
兰州市东岗西路320号 730000 电话:0931-4967592, 0931-4967596