数据来源为地理空间数据云。本数据通过对多幅源数据DEM进行拼接,并用泾河流域边界裁剪,得到泾河流域数据DEM。再利用ArcGIS软件-水文分析工具确定河流网络,河流流向,汇流计算,水流长度,河流流量。
采集时间 | 2000/01/01 - 2000/12/31 |
---|---|
采集地点 | 泾河流域,陕西省,甘肃省,宁夏回族自治区 |
数据量 | 145.6 MiB |
数据格式 | 栅格 |
数据空间分辨率(/米) | 30米 |
数据时间分辨率 | 年 |
坐标系 | WGS84 |
数据来源于地理空间数据云(http://www.gscloud.cn/search)。
(1)对下载DEM进行拼接,并使用泾河流域边界进行裁剪;
(2)利用ArcGIS软件的水文分析工具确定泾河流域河流网络、流向、流量、汇流累积量和水流长度等因子。
数据质量良好。
# | 标题 | 文件大小 |
---|---|---|
1 | 泾河.rar | 145.6 MiB |
# | 时间 | 姓名 | 用途 |
---|---|---|---|
1 | 2024/09/29 10:24 | 王*豪 |
我申请使用数据的主要目的是为了开展相关的学术研究,测试流域水文模型软件,旨在深入分析数据背后的趋势和模式,以推动该领域的理论发展和实践应用。
|
2 | 2024/07/28 03:45 | 原* |
论文题目:泾河流域历史城市多尺度空间格局特征和转译研究
数据在研究中的作用:基础数据采集
论文类型:博士论文
导师姓名:刘益阳
|
3 | 2024/05/30 18:41 | 唐* |
论文题目:黄河中上游——关于泾河流域咸阳段生态环境问题研究(题目未定)
数据在研究中的作用: 作者自绘需要
论文类型:
导师姓名:
|
4 | 2024/04/24 19:17 | 杨* |
项目需要量取泾河流域面积,不同地区不同地点流域面积量取复杂,所以申请
|
5 | 2024/04/23 18:00 | 郭*雪 |
论文题目:黄土高原典型流域水土保持措施对水沙过程的调控机制
数据在研究中的作用:数据分析
论文类型:期刊论文
导师姓名:高鹏
|
6 | 2024/04/23 01:52 | 李* |
Paper title:A two‑step downscaling method for high‑scale super‑resolution
of daily temperature — a case study of Wei River Basin, China
Paper abstract:Climate data with high spatial and temporal resolution were of great signifcance for regional environmental management,
such as for early response to possible predicted local climate changes and extreme weather. However, the current downscal-
ing targets for CMIP6 climate simulations were mostly medium-resolution (MR) reanalysis data, which were still coarse for
local analysis. A two-step downscaling method was proposed for 100 × resolution enhancements of general circulation model
(GCM) daily temperature data in this study. First, the historical GCM outputs were 10 × downscaled to a set of dynamically
predictable MR data using a deep convolutional neural network (CNN), which included both encode-decode structure and
long-short skip connections. Then, using high-resolution (HR) topographic data and MR climate data as auxiliary data,
the GCM data were super-resolved to a series of images with spatial resolution of 1 km. A one-step downscaling analysis
combined only with HR topographic data was performed as comparison. Seven evaluation metrics were selected to evaluate
the prediction accuracy, and the results showed that the overall performance of two-step downscaling method was better
than one-step downscaling method. Higher Nash–Sutclife efciency (NSE) and lower mean absolute relative error (MARE)
indicated that the two-step method performed better prediction of peak and low values. It was further confrmed by accuracy
evaluation on the 10% max and 10% min values of the testing dataset. The introduction of dynamically predictable MR data
could provide efective detailed information during the downscaling process and improve the prediction accuracies. Finally,
the projected data of four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015–2050 were downscaled to
the study area. The complex temporal and spatial variations indicated that there were great diferences in temperature changes
in a basin, and diferentiated management measures should be proposed in advance.
Paper type:期刊论文
Tutor:无
想要在此文章基础上进行进一步研究,因此需要更加细致的基础数据
|
7 | 2024/04/07 21:59 | 霍* |
泾河流域土壤重金属污染——空间流行病学分析,期刊论文
|
8 | 2024/03/27 19:24 | 杨*越 |
配合黄河流域高质量发展规划编制,对黄河流域甘肃段水资源高效利用进行相关研究
|
9 | 2024/03/20 08:23 | 李*滨 |
为了完成我们导员布置的作业,并且提升自己的专业课程素养,为以后工作打好基础
|
10 | 2023/08/16 19:24 | 刘*源 |
小论文数据小论文数据小论文数据小论文数据
|
©2024 中国科学院西北生态环境资源研究院 备案号:陇ICP备2021001824号-34
兰州市东岗西路320号 730000 电话:0931-4967592, 0931-4967596